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Abstract:
The investigator applied statistical analysis techniques to radioactive decay data gathered via a 

Geiger-Muller tube. The investigator mapped out the plateau and operational voltage of the Geiger 

Muller tube by iterating and recording counts in 20volt increments until the upper knee was reached. 

The lower knee, operational voltage and upper knee were, 780volts, 900 volts, and 1020 volts 

respectively. Later, spreadsheet programs and other data analysis tools were employed on the gathered 

count data to develop familiarity with statistical procedures such as standard deviation, error, variance, 

and to glean understanding of the effects of such figures in the laboratory environment. The results 

were found to correlate strongly with historical expectation values.
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Introduction:
The  investigator’s  purpose  in  the  experiment  was  to  extract  data  from a  highly  stochastic

process using statistical analysis techniques and good laboratory practices. Additionally the researcher

pursued understanding of their laboratory equipment, its limitations, and the consequences thereof to

the collection and analysis of experimental data via repeated collection runs with the Geiger-Muller

tube(apparatus). Collection runs were performed in 100 volt increments until the lower knee of the

detection curve for the tube was reached. Next, 20 volt increments where used to increase the effective

resolving power of the apparatus over the plateau range, where the delta in counts per voltage step is

much smaller. Voltage was continuously raised until counts began to climb exponentially again, thus

marking the upper knee of the detection curve. Data points were continuously recorded and stored for

later  processing.  In  service  of  the  task,  precision  error  measurement,  deviation,  sample  mean and

variation calculations were performed on the data collected via the Geiger Muller tube in a spreadsheet

calculation system. 

The work done by the investigator would be impossible without the use of the Geiger-Muller

tube apparatus; thus, a discussion of its history and function is in order. Sometime in 1908, Geiger and

Rutherford et al. Published a paper outlining a method of detecting radiation via electron cascades,

known as  Townsend avalanches,  between highly charged conductors  in  a gas  filled chamber.  This

discovery led eventually to an additional publication in 1928 by Geiger and Muller implementing the

concept in a more useful form factor that would allow more wide spread application of the “electronic

radiation counting device” in research and industry. At its foundation, the Geiger-Muller tube is a set of

electrodes  held  generally  at  several  hundred  volts  in  a  rarefied  gas  atmosphere.  When  radiation

penetrates the containment and ionizes the rarefied gas, it generates fast moving liberated electrons that

in turn ionize more gas molecules, freeing even more electrons. Ultimately these electrons are drawn to

the high positive potential on the central anode and form an electron cascade of sufficient magnitude  to

disturb the steep voltage potential between the electrodes and in turn the voltage across a measurement

resistor in the detection device. The disturbances are then counted  and translated to a audible beeping

or clicking sound by the detector informing the operator of the approximate radioactive state of their

surroundings.   In  relation  to  the  investigator’s  experiment,  the  operation  and  development  of  the

Geiger-Muller tube explains the nature of the “count” variable and aids in understanding the nonlinear

nature of the detection curve.  Additionally,  the role that the electric potential(voltage) plays in the
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operation of the tube illuminates some of the limitations of the apparatus and is enlightening as to the

relationship  of  the  voltage  and  detection  sensitivity,  as  well  as  to  the  interesting,  but  potentially

dangerous effects of operating in environments where the Geiger-Muller apparatus runs up against its

functional limits.
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Theory:

Preempting  the  exploration  of  radiation  and  statistical  analysis  of  a  stochastic  process,  is

understanding the theory behind statistics and radiation themselves. A common feature of stochastic

processes is the need for repeated measurements and relatively large sample sizes  recorded under

reasonably controlled conditions and in close cropped time intervals in order to produce curves that

most closely fit collected data. However, even under perfectly controlled conditions  it is impossible to

precisely  predict  the  outcome of  a  stochastic  event,  especially  in  the  case  of  individual  decaying

particles.   In reality, large collections of radioactive particles are the dominant state in which they are

encountered,  thus,  statistical  estimation  becomes  an  effective  method  for  predicting  average

radioactivity. The arithmetic mean is the preferred tool for measuring average activity in radioactive

samples it is denoted (n’). It is calculated as:

n '=
∑ n

N

where the sum of n is all counts over a time interval, and ‘N’ is the total number of observations.

Theoretically, the sample mean is the true mean only when an infinite number of measurements are

made. In reality,  measurements can only be made for a finite  time and thus,  error accounting and

correction becomes necessary. 

Generally,  error  takes  two  forms,  determinate  or  indeterminate;  Where  determinate  errors

encompass  faulty  experimental  technique,  miscalibrated  equipment,  and  systematic  failures.

Determinant  errors  can  be  mitigated  by  careful  planning,  meticulous  organization  and  cautious

experimentation on the part of the investigator. Indeterminate errors however, can not be controlled by

laboratory procedure or investigator caution, as they are often of a random nature and defy effective

prediction.  Radioactive  decays  would  be  just  one  source  of  such  indeterminate  errors,  as  their

stochastic  nature  precludes  prediction  and  complicates  accurate  study  of  individual  radioactive

particles. As many learned in their early education, for any measurement to be accurate, it must be

unbiased  and  precise.  That  is,  the  measurements  must  be  consistent  from  sample  to  sample,  as

measured by the “standard deviation” in order to account for indeterminate errors as well as being

either voluminous or of sufficient quality to counteract effects of  machine miscalibrations  or failure of
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analytical equipment or personnel.  Concisely, accuracy is proximity of a measured value to a known or

preferred  value;  while  precision  is  the  grouping  of  any  set  of  values  relative  to  the  surrounding

measurements.  

Often, in discussions of precision and accuracy, analysis of the data turns to probability as the

fundamental feature for determining  distribution of data sets. As defined, probability is the likelihood

of an occurrence denoted as a fraction  between zero, and one. If an event has a probability closer to

zero,  then it  is  a less likely occurrence;  as an event trends closer  to  one,  then it  is  a more likely

occurrence.  Such  probability  values  can  be  plotted  and  evaluated  as  a  graph   using  the  Poisson

function, below:

Pn=
un e− u

n!
 .

The Poisson function generates a probability distribution curve that depicts the likelihood of a

random  event.  Its  flexibility  is  such  that  it  is  applied  across  sciences,  from  describing  chemical

compound interaction rates, to radiosource decay rates and quantum interaction cross sections. The

Poisson distribution is a potent statistical tool, but it is computationally complex. A similar effect to the

Poisson function can be achieved with the “Gaussian” function shown below:

Gn=√( 1
2π u )e

− (( (n−u )2) /2u )

 

This  function  can  be  used  to  more  quickly  obtain  a  probability  description  of  the  counts

produced by a radioactive source, as compared to the description of the Poisson function.  

In order to develop a complete grasp of data collection and analysis, it is necessary to discuss

error  and its  calculation to  promote fidelity  in  the reporting of  laboratory data  and inform further

analysis of the specific radiometric data gathered via the geiger-muller tube.  Relative error can be

calculated by finding the number of standard deviations in the error, like so,

n−u=τσ

7



Modern Physics:Statistical Analysis

Then, the probability of that error falling within expectation values, or the “confidence interval”, can be

calculated with the relation,

Gτ dτ= 1

σ √(2π )
e (( −τ 2) /2) dt .

This is a function in terms of sigma, or standard deviations. Any measurement of confidence

will be given in terms of sigma, or the confidence interval, denoting a quantification of the level of

confidence in a particular measurement, based on its relation to other measurements in a data set, and

its accuracy when compared to expected values. A similar system can be observed in use in high energy

physics  experiments,  as well  as  observations  of nuclear  decay.  For instance,  CERN, the European

nuclear research institution regularly updates the public as to discoveries of new particles, however,

such  announcements  are  made  only  when  the  sigma  of  a  measurement  has  exceeded  a  certain

confidence level. CERN performs hundreds of thousands or even millions of particle collisions per day

in a known set of energy levels. Whenever an as yet unpredicted or unseen energy signature appears in

the particle collision cloud remnant data usually in the form of a bump in the debris cloud energy

curve, more experiments in that energy domain are performed to draw out repeated occurrences and

build up a profile of a phenomenon at a given energy range, in terms of its probability of occurrence

and the significance of the measurement.  As more data builds up, and the occurrence repeats or does

not repeat for a given collision energy, a confidence interval and set of error bounds are produced to

describe the likelihood that the discovery is a real particle and worth reporting. Once the occurrence

has been mapped multiple times with in the expected error bounds and is shown to be an event with

known regularity at a given collision energy, a confidence interval can be established along with a

gaussian or poisson distribution of its production probability at that energy level. If the event continues

to be mapped within expected error bounds for that collision energy, the confidence interval grows, and

certainty of the discovery increases, that is the “sigma” of the event increases, which reduces the ratio

of the uncertainty and moves the probability of the event being real closer to one.  An example of a

Gaussian distribution  with standard deviations labeled is below.
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As seen  in  the  graph,  any measurement  made for  its  data  set  will  be  within  one  standard

deviation of the mean value 34% of the time, that is, you can be 34% confident of a measurement

landing within one standard deviation of the mean. Additionally, one can see that 95% of the area under

the curve is contained within 2 standard deviations of the mean, showing that the measurements will be

within 2 standard deviations 95% of the time. Beyond just telling you the confidence and probability of

a particular dataset, the gaussian and poisson distributions can inform investigators of the “probable”

error, which is a description of the 50% confidence interval in a dataset, defined mathmatically;

P=0.6745 σ .

One  might  expect  data  to  conform  to  a  normal  curve,  such  as  the  gaussian  or  poisson

distribution, but as all real experiments are constrained to approximating the mean in finite time, and

the standard deviation relative to that mean, exactitude cannot be assumed. In reality, the approximated

mean for finite time, n’ and the sample standard deviation “s” are used. S can be given mathematically

as,

s=√( 1
N −1

/∑ (n−n ' )2) .

With the conclusion of the discussion of statistical theory and analysis, begins the exploration of

the operational theory specific to radiation detection and counting, and how the data sets, to which

statistical analysis is applied, are collected. Radiation can be characterized as energized particles such

as electrons, alpha particles, and photons, that, when they interact with other matter tend to deposit

their energy into the particles of that matter, resulting in myriad effects, from ionization, to nuclear

reactions, decay events, electric currents and heat. In the case of the Geiger-Muller apparatus, energized

particles, pass through a thin “window” into a charged tube containing a thin charged wire and a certain

amount of gas, usually helium or argon, but sometimes radon or xenon, at low pressure. When the

energized radiation, whether electrons, alpha particles or photons, interacts with the gas molecules in

the  tube,  the  gas  atoms  sometimes  become  ionized  and  are  drawn  along  the  established  voltage

gradient in the tube, toward the outer wall. As they travel, the free electrons from other atoms and
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increase the number of liberated electrons in the tube. These liberated electrons travel at high speed

along  the  established  voltage  gradient  toward  the  center  filament,  sometimes  freeing  even  more

electrons as they travel. This electron cascade is referred to as a townsend avalanche and eventually

results in a substantial spike in the current on the center filament. This process allows individual rays of

radiation at sufficient energy to trigger short pulses of current which can be counted by the counting

machine in  order to establish the intensity of the radiation measured.  Thus,  “counts” are  found in

relation to the radiation intensity and the voltage of the tube. The process of ionization of the gas in the

tube  results  in  the  accumulation  of  positive  ions  at  the  cathode(tube  wall),  and  electrons  at  the

anode(center filament) which, if left unchecked would result in continuous discharge and the ruination

of the Geiger-Muller apparatus. To combat this problem, Geiger-Muller devices have various modes of

“quenching”, either by intermittently altering the voltage gradient in the tube, or through the addition of

halogens or poly-atomic gases to the rarefied atmosphere to allow recombination of electrons with

positive  ions  and  allow  recovery  of  steady  state  of  charge  even  after  large  numbers  of  ionizing

interactions with radiation sources. A depiction of the Geiger Muller tube is shown below.
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Experimental Procedure:

An experimental setup as shown was assembled from available equipment including, a Geiger

Muller tube and counter, tube holder, test rack and radioactive samples. The counter was plugged into

120 volt AC power and connected via coaxial cable to the Geiger-Muller tube. The Geiger-Muller tube

was carefully, especially with respect to the mica detection window, placed into the aperture of the

sample rack, and hooked up to the counter on the appropriate port.  The counter was then calibrated for

0 volts of control voltage, and 30 second intervals for the first trial.

A gamma ray producing sample was placed on the top shelf of the sample rack and the Geiger-

Mueller tube placed in the aperture above the shelf. The investigators adjusted the control voltage by

one hundred volts per trial, and recorded the number of counts read out every 30 seconds. Eventually,

the plateau voltage of the Geiger-Muller tube was achieved and the investigators reduced the voltage

down to the initial increment. 

The  investigators  then  began  to  map  the  plateau  response  of  the  Geiger-Muller  tube  in

continuous 20 volt  control increments.  No disturbances of the Tube,  counter  or source were made

throughout the experiment, until a catastrophic failure of a gas line outside the laboratory necessitated

the evacuation of all personnel and cut the experiment short. The gathered data, along with an example

of statistical analysis on an equivalent but separate data set are included below.
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Graphs and Charts:

General Statistical Analysis Data: chart(1)

Trial No. n |n -`n| (n -`n)² (n - `n)
1 2,275.00 47.22 2,229.73 47.22
2 2,227.00 0.78 0.61 -0.78
3 2,374.00 146.22 21,380.29 146.22
4 2,463.00 235.22 55,328.45 235.22
5 2,333.00 105.22 11,071.25 105.22
6 2,276.00 48.22 2,325.17 48.22
7 2,453.00 225.22 50,724.05 225.22
8 2,396.00 168.22 28,297.97 168.22
9 2,298.00 70.22 4,930.85 70.22
10 2,365.00 137.22 18,829.33 137.22
11 2,337.00 109.22 11,929.01 109.22
12 2,337.00 109.22 11,929.01 109.22
13 2,293.00 65.22 4,253.65 65.22
14 2,301.00 73.22 5,361.17 73.22
15 2,087.00 140.78 19,819.01 -140.78
16 2,122.00 105.78 11,189.41 -105.78
17 2,159.00 68.78 4,730.69 -68.78
18 2,130.00 97.78 9,560.93 -97.78
19 2,180.00 47.78 2,282.93 -47.78
20 2,041.00 186.78 34,886.77 -186.78
21 2,121.00 106.78 11,401.97 -106.78
22 2,082.00 145.78 21,251.81 -145.78
23 2,218.00 9.78 95.65 -9.78
24 2,234.00 6.22 38.69 6.22
25 2,155.00 72.78 5,296.93 -72.78
26 2,170.00 57.78 3,338.53 -57.78
27 2,230.00 2.22 4.93 2.22
28 2,515.00 287.22 82,495.33 287.22
29 2,531.00 303.22 91,942.37 303.22
30 2,448.00 220.22 48,496.85 220.22
31 2,346.00 118.22 13,975.97 118.22
32 2,364.00 136.22 18,555.89 136.22
33 2,282.00 54.22 2,939.81 54.22
34 2,110.00 117.78 13,872.13 -117.78
35 2,100.00 127.78 16,327.73 -127.78
36 2,197.00 30.78 947.41 -30.78
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37 2,263.00 35.22 1,240.45 35.22
38 2,060.00 167.78 28,150.13 -167.78
39 2,095.00 132.78 17,630.53 -132.78
40 2,171.00 56.78 3,223.97 -56.78
41 2,079.00 148.78 22,135.49 -148.78
42 2,126.00 101.78 10,359.17 -101.78
43 2,060.00 167.78 28,150.13 -167.78
44 2,151.00 76.78 5,895.17 -76.78
45 2,121.00 106.78 11,401.97 -106.78
46 2,192.00 35.78 1,280.21 -35.78
47 2,081.00 146.78 21,544.37 -146.78
48 2,118.00 109.78 12,051.65 -109.78
49 2,114.00 113.78 12,945.89 -113.78
50 2,208.00 19.78 391.25 -19.78

Sum 111,389.00 5,405.68 818,442.58 0.00
Average 2,227.78 108.11 16,368.85 0.00

Standard Deviation 129.24 69.11 19,629.63 129.24
Sample Variance 16,702.91 4,775.82 385,322,278.69 16,702.91

Gathered Sample Radiation Data: (chart 2)

Voltage Counts
100 0
200 0
300 0
400 0
500 0
600 0
680 294
700 420
720 363
740 378
760 367
780 443
800 422
820 426
840 460
860 446
880 464
900 456
920 474
940 506
960 525
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980 559
1000 584
1020 607
1040 1089
1060 3151

Sum 19500 12434
Average 750 478.23

Std. Devi.
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A clear plateau is shown in the above graph of the radiation data. It begins at roughly 740 volts

and continues past the operational voltage of 900 volts and on up to the beginning of the upper knee at

1000 volts. The mean count value can be seen in the second chart above, on which the graph is based,

to be 478.23 counts per trial, with a substantial deviation of 600.28~ counts. 
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Calculations:

n '=
∑ n

N

Pn=
un e− u

n!

Gn=√( 1
2 π u )e

− (( (n−u )2) /2u )

n−u=τσ

Gτ dτ= 1

σ √(2π )
e (( −τ 2) /2) dt

P=0.6745 σ

s=√( 1
N −1

/∑ (n−n ' )2)
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Analysis and Conclusions:

The results of the radiation counting experiment proved to fit expectations nicely. The lower

knee, plateau, operating voltage and upper knee of the Geiger-Muller tube were within expectation

values for such a device in its condition and for its age. The sample of radioactive cobalt, a gamma

source, yielded counts of 464-474 counts in center of the operating voltage range for the Geiger-Muller

tube. In the case of the radioactive sample data, the full set of 50 trials is unavailable, thus causing

some irregularities in the plateau due to a sparse sample set. The experiment was cut short roughly half

way through data collection, due to a major gas leak. Fortunately, the equipment was not disturbed

during the 26 intervals in which data was collected, thus eliminating the need to manipulate any data to

better fit expectations or perform heavy error correction. The collected data covered the full operating

range of the Geiger-Muller tube,  and so was sufficient for analysis  and plotting.  Additionally, the

calculated mean,  478.23,  of  the counts  is  reasonable for  the range of  expected values  and closely

matches the counts, 464-474, registered in the operational voltage range of the Geiger-Muller tube, well

within one deviation of the mean.  Furthermore,  in the data that was collected,  very little error is

present; any error that can be found would be due to the age of the equipment, wear and tear on the

electronics of the counter or tube, or perhaps due to fluctuations in power supply. Regardless of the

source, all error appeared to be sub threshold and did not meet the criterion of significance.  On the

other hand, variances in the data were extreme, as testified by the value in chart 2, 360338.34~; This

large  value  can  be  explained  by the  substantial  unpredictability  of  radioactive  decay  and  a  small

number of trials. Decay events will be on average, of mean intensity and timing, however, there will

exist many events in any mass of decaying atoms that occur multiple deviations from the mean which

contributes substantially to the variance in the data. While this variance is not apparent in the graph due

to the small number of samples, given a larger time to sample and a larger volume of trials, the variance

would make itself more apparent in the data and would likely normalize with increasing number of

samples.  On the statistical analysis data, everything appears to be in its proper place, error values are

contained because the data was gathered in a controlled environment with reliable equipment and no

major mishaps. Additionally, the variance in the data set in chart 2 is seen to be much lower than for the
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measured radioactivity  data,  due to the longer  exposure times and the larger  number of trials;  as

expected, the variance normalizes with increasing numbers of trials. Furthermore, the average counts in

the  statistical  analysis  data  appears  to  fit  expectation  values  for  1  minute  exposure  times  and the

radioactive source used(also cobalt).  The standard deviation for the data set is small due to the larger

number  of  samples  and longer  exposure times.  With more  time to view the sample,  the  tube and

counter are able to reach a more stable value of radiation counts, and with more trials, the deviations in

the data shrink relative to the quantity of samples collected, thus reducing the standard deviation of the

data. Whats more is, the statistical data appear to have controlled sample variance due to the larger

number of trials relative to the observed variance in each sample.

In conclusion radioactive sources do in fact radiate in highly variant and unpredictable ways.

Decay  events  remain  unpredictable  at  an  individual  level,  in  much  the  same  way  that  classical

mechanics breaks down when attempting to calculate the motions and positions of more than 3 bodies

simultaneously. The sheer number of decay events happening simultaneously in even a tiny amount of

appreciably radioactive material makes preempting decay events impossible; However, the intelligent

application of statistics to carefully collected data in sufficient volumes can allow for some degree of

understanding and analysis  of  an  otherwise  difficult  system.  By reducing the  problem to a  set  of

averages,  and  utilizing  the  tools  of  statistics,  such  as  deviation,  mean,  median,  mode,  error,  and

variance one can extract useful information about whole radioactive sources and determine pragmatic

details about those sources, their safety and their usefulness. Additionally, one ought to know the limits

of ones tools, such as the limits of the Geiger-Muller tube; The Geiger-Muller apparatus is blind for a

brief period after it encounters an ionizing particle due to the imbalance of charges in the tube, thus a

quenching system is required to restore charge balance. However, any quenching system will have an

upper limit on the rate at which it can restore the charge balance in the tube, thereby placing a limit on

the maximum radiation dosage a specific tube can reliably count. In fact, if that maximum of reliability

is exceeded, the tube may begin to backtrack producing erroneous readings of lower radiation levels

than  those  that  exist  in  the  measured  sample.  Hence,  why  many  modern  Geiger-Muller  based

radiometric devices include feedback and control circuitry that can warn of a over dosage failure or

measured radiation counts in excess of the reliability limits.
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